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Using the Minimal Irreversible Quantum Mechanics formalism, it is demonstrated
that the quantum regime can be considered as the transient phase while the final
classical equilibrium regime is the permanent state. A basis where exact matrix
decoherence appears for these final states is found. The appearance of a classical
universe in quantum gravity models is the cosmological version of this problem.

1. INTRODUCTION

In ref. 1, following the development of a new formalism that we call

Minimal Irreversible Quantum Mechanics, we studied the relation of the

state vectors r of a closed isolated quantum system (which belong to a set
of states 6) to the observables O within this closed system (which belong

to a space of observables 2). We consider that the essence of this relation is

the mean value of an observable O in a state r , which is given by the equation

^ O & r 5 Tr( r O) 5 ( r ) O) (1.1)

In fact, what we actually measure is this kind of average, since we cannot
either measure the state r directly or measure with infinite precision [2 ].

Moreover, these averages can be considered, as in the r.h.s. of Eq. (1.1), the

result of a linear functional ( r ) P 6 (a convex set) acting on a vector ) O) P
2, and therefore we can say that 6 , 28, with 28 the dual of space 2. While

for the usual states (mixed or pure) we can use Tr( r O), they are generalized
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states that can be defined as the functional ( r ) O) as explained in ref. 1. Many

results were obtained using this mathematical formalism (see, e.g., refs. 1,

3, 4). On the other hand, the appearance of a classical universe in quantum
gravity models is the cosmological version of the problem we are discussing

[5 ]. In this paper we will use the formalism of ref. 1 to explain the phenomenon

of decoherence which, combined with the disappearance of the uncertainty

relations, in the limit " ® 0, gives rise to the classical final equilibrium state.

To solve these problems the usual technique is coarse-graining. But in our

method we will consider not only the coarse-graining average, but all possible
averages made using the observables of the space 2; thus we are generalizing

the coarse-graining idea. In fact, among the observables of 2 there are some

that, from the density matrix r , take into account only some component r r ,

the so-called relevant part of r , and neglect completely the complementary

component r i , the so-called irrelevant part of r , i. e., they measure the

properties of what it is considered as the ª systemº (contained in r r) and
neglect or average the properties of the ª environmentº (contained in r i). But

we will consider not only this kind of observable, but all observables in 2.

Therefore the interplay of observables and states will take the role of the

coarse-graining in this paper [see also Eq. (2.16) ]. With this strategy we can

obtain all the old results, but we will also find some new ones.
We will use this method to prove that a large class of quantum systems

evolve from the quantum phase to classical final equilibrium: precisely, from

a phase where we must use the laws of (statistical) quantum mechanics to a

phase where we must use the laws of statistical classical mechanics [2 ]. The

main characteristic of the quantum laws are as follows:

1. The non-Boolean nature of the way to find the probability of two
exclusive events (considering that this probability is the square modulus of

the sum of their amplitudes and not the sum of the probabilities).

2. The uncertainty relations.

In the quantum to classical evolution the first characteristic disappears

(and the Boolean way of adding probabilities is established) by a process

known as decoherence and the uncertainty relations can be neglected in the
limit " ® 0. Then we can use the laws of classical statistical mechanics.

Four observations are in order:

(i) Using our language, the generalized idea of decoherence can be stated

in the following way: At the quantum level the average (1.1) reads

^ O & (q)
r 5 o

v , v 8
r v v 8O v 8 v (1.2)

where r v v 8 and O v v 8 are the components of the operators r and O, respectively

(and where the index v symbolizes all the necessary indices; to fix the ideas,

let us consider the index v as the eigenvalue of the operator O that, for
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simplicity, we take as nondegenerate). Equation (1.2) can be considered as

the average of some quantities O v v 8 weighted by some generalized correlations

r v v 8 (since the r v v 8 are probabilities, but the r v v 8, with v Þ v 8, are quantum
correlations). On the other hand, at the classical level we also have some

quantities O v that correspond to a set { v } of the exhaustive and exclusive

alternatives, each one with a (Boolean) probability p v of measure v for the

observable O. The corresponding classical weighted average is

^ O & (cl)
r 5 o

v
p v O v (1.3)

where ( v p v 5 1. The transition for the quantum phase to the classical one

is therefore

o
v , v 8

r v v 8O v v 8 ® o
v

p v O v (1.4)

at least for some O which belong to a preferred subspace of 2 (i.e., to a

subspace expanded by a complete set of commuting observables, CSCO, that
we will define below; the eigenbasis of this set will be the so-called final
pointer basis). If in (1.4) we take r v v 5 p v and O v v 5 O v , these matrices

must become diagonal in the final pointer basis (such privileged bases must

exist since only the unit matrix I is a diagonal in any basis). This is the essence

of the transition, since the relation above will be valid for all observables of
the CSCO and we will have

^ O & (q)
r ® ^ O & (cl)

r (1.5)

If this transition takes place, Boolean logic is established in the statistical
classical system if we perform the measurement with the observables of the

preferred CSCO. In the usual parlance we will then say that the density

matrices that contain quantum interference terms become diagonal, in such

away that these interferences are suppressed. Then the quantum way to

find probabilities of exclusive and exhaustive alternatives, i.e., adding the

corresponding amplitudes and computing the norm, becomes the classical
Boolean way: just adding the probabilities. Moreover, the uncertainty relations

will disappear, when " ® 0, precisely when the characteristic dimension of

the system makes " a negligible quantity.

(ii) In this paper decoherence is essentially studied in systems with

continuous spectrum. The case of discrete spectrum, and the causes of deco-

herence in this case, are discussed in Section 2.3.
(iii) In the case of the continuous spectrum the essence of the method

is the following: If we call n 5 v 2 v 8, the r v v 8 of Eq. (1.2) is a function r ( n ,

. . .). Then the time limit of its evolution is given by the Riemann±Lebesgue

theorem, which prescribes that
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lim
t ® ` #

a

2 a

e 2 ivt r ( n ,. . .) d n 5 0 (1.6)

if r ( n , . . .) is integrable. So all diagonal terms ( n 5 0) or off-diagonal terms

( n Þ 0) vanish. Therefore this theorem cannot be used as a computation

method in the case of continuous spectrum. Nevertheless if we consider the

problem within a cube L3, define r v v 8 there, and make L ® ` , we can show

that a singular structure appears for r ( n , . . .):

r ( n , . . .) 5 r S( n , . . .) d ( n ) 1 r R( n , . . .) (1.7)

where r S( n , . . .) and r R( n , . . .) are regular integrable functions. Now Eq.

(1.6) reads

lim
t ® ` #

a

2 a

e 2 ivt r ( n , . . .) d n 5 r S( 0, . . .) (1.8)

and the diagonal term remains. The method introduced in ref. 1 is just

designed to deal with the singular d function in Eq. (1.7).

(iv) Before the classical equilibrium limit is reached usually the system

goes through a ª classical phaseº out of classical equilibrium. In this paper

we mostly study the final equilibrium state, but we believe that our method
can be generalized to cover the classical phase. Moreover, we believe that

understanding the equilibrium limit, in the clearest and most concise way,

will enhance the chances to understand the much more difficult problem of

the classical phase.

Following these ideas, we will see (Section 2), using the Riemann±

Lebesgue theorem, that the required transition (1.5) takes place in all closed
systems endowed with a continuous spectrum (like the classical mixing

systems). More general cases will be considered in Section 2.3.

In Section 3 we reach the principal aim of the formalism, which is to

create a bridge between quantum and classical mechanics, precisely between

quantum mechanics and classical statistical mechanics. Let us consider a

system whose quantum state is defined by a density matrix r , and a set of
classical trajectories in phase space labeled by some constants n, l1, . . . , lN ,

a1, . . . , aN , where n corresponds to the energy, li , . . . , lN to other dynamical

momentum variables, and a1, . . . , aN to configuration variables. The aim of

the theory is:

1. To transform the matrix r into a classical density function in phase

space r (q, p) when " ® 0.
2. To decompose r (q, p) as

r (q, p) 5 o
n, l1,...,lN,a1,...,aN

pn,l1,..., lN,a1,...,aN r n,l1,...,lN ,a1,...,aN(q, p) (1.9)

where x and p are the position and momentum coordinates and the classical
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densities r n, l1,. . . , lN,a1,. . . ,aN(q, p) would correspond to each classical trajectory4

(in the classical sense that it is peaked in the trajectory and thus it vanishes

from the near neighborhood of the trajectory to the far zones of the phase
space) and pn, l1,. . . , lN ,a1,. . . ,aN

is the probability of each trajectory.

We will obtain the following results:

1. r (q, p) will be the Wigner function corresponding to r .

2. r n, l1,..., lN,a1,...,aN(q, p) will be the Wigner functions of the wave packets
going along the classical trajectories labelled by the constant of the motion

n, l1, . . . , lN , and passing through the initial point of coordinates a1, . . . , aN.

We will see that all this happens after a convenient decoherence time

and we will obtain the last expansion in Eq. (3.19), and therefore what we

consider the best bridge between classical and quantum concepts (see ref. 6
for a very similar conclusion).

We draw our main conclusions in Section 5.

2. DECOHERENCE

2.1. Decoherence in the Energy

Let us consider a closed and isolated quantum system with N 1 1

dynamical variables and a Hamiltonian

H 5 H 0 1 l W (2.1)

where l is a coupling constant (for some considerations we will take l ¿

1, so in this case we will deal with underdamped systems, otherwise the

formalism will be general). Let us suppose that H 0, the free Hamiltonian,

has a spectrum with a discrete part (corresponding, e.g., to several bound

states) and a continuous part (corresponding, e.g., to scattering states). Let

us further suppose that the interaction l W produces the decay of all the bound

states but (eventually) one: the ground state (we will consider the case of
more than one bounded undecayed state in Section 2.3). So the discrete part

of the spectrum of H has only one value v 0 and the continuous spectrum is

0 # v , ` . (How the discrete spectrum behaves in the continuous limit can

be seen in refs. 7 and 8). Eventually we will give the collective name n to

both v 0 and v .

We will discuss decoherence, elimination of the uncertainty relations,
and the outcome of the classical realm in this quite general model. Let us

begin with decoherence.

4 The dimension of the phase space considered is 2(N 1 1). Then there are (N 1 1) momenta
and (N 1 1) coordinates. So N 1 1 is the number of parameters necessary to label the momenta
of the classical space-time trajectories, and N the number necessary to label the origins of
the trajectories.
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To obtain the H-Hamiltonian eigenbasis of the Hilbert space * we can

consider the Hamiltonian of Eq. (2.1) and construct the basis where it is

diagonal, which we will call { ) v & } ( v is the energy eigenvalue). It can be,
e.g., the Lippmann±Schwinger basis [9 ] or any other basis that diagonalizes

the Hamiltonian as

H 5 v 0) v 0& ^ v 0) 1 #
`

0

v ) v & ^ v ) d v (2.2)

where ) v 0& is the ground state. From this expression we can deduce that the

most general observable that we can consider in our model reads

O 5 O 0) v 0& ^ v 0) 1 #
`

0

O 0v ) v 0& ^ v ) d v 1 #
`

0

O v 0) v & ^ v 0) d v

1 #
`

0

O v ) v & ^ v ) d v 1 #
`

0 #
`

0

O v v 8 ) v & ^ v 8 ) d v d v 8 (2.3)

where the functions O v 0, O v 0, O v , O v v 8 are ordinary functions (these functions
must have certain mathematical properties in order to develop the theory;

these properties are listed in ref. 1). Namely, the most general observable

must have a singular component (the fourth term of the r.h.s. of the last

equation) and a regular part (all the other terms). If the singular term were

missing, the Hamiltonian (2.2) would not belong to the space of the chosen

observables [1 ]. We will say that these observables belong to a space 2. This
space has the basis { ) v 0), ) v 0, v ), ) v , v 0), ) v ), ) v , v 8)}:

) v 0) 5 ) v 0& ^ v 0) , ) v 0, v ) 5 ) v 0& ^ v ) , ) v , v 0) 5 ) v & ^ v 0)
(2.4)

) v ) 5 ) v & ^ v ) , ) v , v 8) 5 ) v & ^ v 8 )
The quantum states r are measured by the observables just defined, computing

the mean values of these observables in the quantum states, i.e., in the usual

notation, ^ O & r 5 Tr(O r ) [2 ]. These mean values, generalized as in ref. 1, can
be considered as linear functionals r (mapping the vectors O on the real

numbers), which we can call ( r ) O) [10]. In fact, this is a generalization of

the usual mean value definition. Then r P 6 , 28, where 6 is a convenient

convex set contained in 28, the space of linear functional over 2 [11, 12 ].

The basis of 28 (which can also be considered as the cobasis of 2) is {( v 0) ,
( v 0, v ) , ( v , v 0) , ( v ) , ( v , v 8 ) } defined as functionals by the equations

( v 0) v 0) 5 1, ( v 0, v ) v 0, v 8) 5 d ( v 2 v 8),

( v 0, v ) v 0, v 8) 5 d ( v 2 v 8) (2.5)
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( v ) v 8) 5 d ( v 2 v 8), ( v ,v 9 ) v 8, v - ) 5 d ( v 2 v 8) d ( v 9 2 v - )

and all other ( ? ) ? ) are zero. In particular, we can define a functional ( ) v 0 & ^ v 0) as

( v 0) O) 5 ^ v 0) O ) v 0& 5 Tr( ) v 0& ^ v 0) O) 5 ( ) v 0& ^ v 0|O) (2.6)

for any O P 2: Then we can verify that

( v 0) 5 ) v 0& ^ v 0) (2.7)

But

( v ) Þ ) v & ^ v ) (2.8)

and ( v ) can be considered only as a functional, being a typical generalized

state. Therefore a generic quantum state reads

r 5 r 0( v 0) 1 #
`

0

r v 0 ( v , v 0) d v 1 #
`

0

r 0v ( v 0, v ) d v

1 #
`

0

r v ( v ) d v 1 #
`

0 #
`

0

r v v 8( v , v 8 ) d v d v 8 (2.9)

where r 0, r v are real and $ 0, r *0v 5 r v 0, and r *v v 8 5 r v 8 v (they must also

have other properties listed in ref. 1). The time evolution of the quantum

state r reads

r (t) 5 r 0( v 0) 1 #
`

0

r v 0e
i( v 2 v 0)t( v , v 0) d v 1 #

`

0

r 0v ei( v 02 v )t( v 0, v ) d v

1 #
`

0

r v ( v ) d v 1 #
`

0 #
`

0

r v v 8e
i( v 2 v 8)t ( v , v 8 ) d v d v 8 (2.1 0)

As we only measure mean values of observables in quantum states, i.e.,

^ O & r (t) 5 ( r (t) ) O) 5 ( r ) O(t))

5 r 0O 0 1 #
`

0

r 0v O v 0e
i( v 0 2 v )t d v 1 #

`

0

r v 0O 0v ei( v 2 v 0)t d v

1 #
`

0

O v r v d v 1 #
`

0 #
`

0

O v 8 v r v v 8e
i( v 2 v 8)t d v d v (2.11)

using the Riemann±Lebesgue theorem, we obtain the weak limit, for all

O P 2,

lim
t ® `

^ O & r (t) 5 ^ O & r * (2.12)

where we have introduced the diagonal asymptotic or equilibrium operator
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r * 5 r 0( v 0) 1 #
`

0

r v ( v ) d v (2.13)

Therefore, in a weak sense (for the classical case see ref. 13) we have

lim
t ® `

r (t) 5 r * (2.14)

Thus, any quantum state goes weakly to a diagonal state, precisely to the

state ( v 0) for the discrete spectrum and to a linear combination of the diagonal

states ( v ) of the continuous one [there are no off-diagonal terms in of the
states since the of diagonal states ( v 0, v ) , ( v , v 0) , or ( v , v 8 ) are not present

in them ]. This is the case if we observe and measure the system evolution

with any possible observable of space 2. Then, from the observational (or

generalized coarse-graining) point of view, we have decoherence of the energy

levels, even that, from the strong limit (fine-graining) point of view the off-

diagonal terms never vanish, they just oscillate, since we cannot directly use
the Riemann±Lebesgue theorem in the operator equation (2.10). So we have

obtained a diagonal matrix in the energy.

Some observations are in order:

(i) The real existence of the two singular parts of O and r is assured

by the physics of the problem. The singular part of the observables is just a

necessary generalization of the singular part of the Hamiltonian, which has
a singular part ) v ) [Eq. (2.2) ]. The singular part of the states is necessary,

since the final state must have a diagonal singular part ( v ) produced by the

decoherence process [Eq. (2.13) ].5 The trace of the product of the these two

parts is just the natural generalization to the continuous trace of the product

of two finite-dimensional matrices [Eq. (2.11); see also ref. 1 ].
(ii) From Eq. (2.12) we can see again that what we are doing is just a

generalized version of coarse-graining. In fact, let us define a projector on

the ª relevant partº of the system as

P 5 o
i

) r i)(Oi ) (2.15)

where ) r i) P 6, ) O i) P 2, and (Oi ) r j) 5 d ij.
6 Then from Eq. (2.12) we have

lim
t ® `

P ) r ) 5 lim
t ® `

o
i

) r i)(O i ) r (t)) 5 o
i

) r i)(Oi ) r *) 5 P ) r *) (2.16)

Thus the weak limit (2.12) can be considered as the limit of P ) r ), the relevant

5 In many case final equilibrium states are singular, e.g., in the Baker ’ s transformation the final
equilibrium state can be considered only as a functional.

6 We have inverted the position of the O and the r in order to obtain the usual equation with
the P acting from the left.
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part of ) r ), which goes to the relevant part of the equilibrium state through

Eq. (2.16).

2.2. Decoherence in the Other ª Momentumº Dynamical Variables

Having established the decoherence in the energy levels, we must con-

sider the decoherence in the other dynamical variables Oi of the CSCO where

we are working, which up to now have not been taken into account. We will
call these variables ª momentum variables.º For the sake of simplicity we

will consider that the spectra of these dynamical variables are discrete. The

diagonal component of Eq. (2.1 0) (which is equal to r *) is time independent,

thus it is impossible that a different decoherence process would take place

in this component to eliminate the off-diagonal terms in the other dynamical

variables. Therefore, the only thing to do is to try find if there is a basis
where these diagonal terms vanish at any time after the equilibrium is reached,

and therefore there is a perfect and complete decoherence. This basis in fact

exists, it is constant in time, and it is known as the final pointer basis.
Let (H, O1, . . . , ON) be the CSCO and { ) v 0, m1, . . . , mN & , ) v , m1, . . . ,

mN & } be the basis that we are using to make our calculations. Thus

H ) v 0, m1, . . . , mN & 5 v 0) v 0, m1, . . . , mN &

H ) v , m1, . . . , mN & 5 v ) v , m1, . . . , mN &

Oi ) v 0, m1, . . . , mN & 5 mi ) v 0, m1, . . . , mN &

O i ) v , m1, . . . , mN & 5 mi ) v , m1, . . . , mN & (2.17)

Then we can add m1, . . . , mN to each symbol of the basis of Eq. (2.4), e.g.,

) v 0, m1, . . . , mN , m81, . . . , m8N) 5 ) v 0, m1, . . . , mN & ^ v 0, m81, . . . , m8N )
) v , m1, . . . , mN , m81, . . . , m8N) 5 ) v , m1, . . . , mN & ^ v , m81, . . . , m8N ) , etc.

(2.18)

Also we can add the symbols m1, . . . , mN to the cobasis {( v 0) , ( v 0, v ) , ( v ,

v 0) , ( v ) , ( v , v 8 ) } as ( v 0, m1, . . . , mN , m8N, . . . , m8N ) , ( v , m1, . . . , mN ,

m81, . . . , m8N ) , etc., defined through the natural generalization of Eq. (2.5).

Then the equilibrium diagonal operator reads7

r * 5 o
m1,...,mN,m8l ,...,m8N

[r ( v 0)
m1,...,mN,m81,...,m8N( v 0, m1, . . . , mN , m81, . . . , m8N )

1 #
`

0

r ( v )
m1,...,mN,m81,...,m8N( v , m1, . . . , mN , m81, . . . , m8N ) d v ] (2.19)

7 For simplicity, we have considered that the indices mi , . . . , mN are discrete, so the ( in Eq.
(2.12) is only an infinite sum.
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Now, from the properties of the components on any r [see below Eq. (2.9) ]

we have

( r ( v 0)
m1,...,mN,m81,...,m8N)* 5 r ( v 0)

m81,...,m8N,m1,...,mN

( r ( v )
m1,...,mN,m81,...,m8N)* 5 r ( v )

m81,...,m8N,m1,...,mN (2.2 0)

Therefore there is a basis {( v 0, l1, . . . , lN ) , ( v , l1, . . . , lN ) } that diagonalizes

the matrix r * as

r * 5 o
n, l1,...,lN

[r ( v 0)
l1,...,lN( v 0, l1, . . . , lN )

1 #
`

0

r ( v )
l1,...,lN( v , l1, . . . , lN ) d v ] (2.21)

where r ( v 0)
l1,..., lN $ 0 and r ( v )

l1,..., lN $ 0. The basis {( v 0, l1, . . . , lN ) , ( v 0, v , l1, . . . ,

lN ) , ( v , v 0, l1, . . . , lN ) , ( v , l1, . . . , lN ) , ( v , v 8, l1, . . . , lN ) , ( v , v 8, l1, . . . , lN ,

l81, . . . , l8N ) } is the final pointer cobasis, namely the basis where r * is diagonal
in all the dynamical variables. As the last diagonalization was done in the

discrete indices, m1, . . . , mN ® l1, . . . , lN , while v 0 and v were untouched,

the pointer basis for the observables is { ) v 0, l1, . . . , lN), ) v 0, v , l1, . . . , lN),

) v , v 0, l1, . . . , lN), ) v , l1, . . . , lN), ) v , v 8, l1, . . . , lN)}, where

) v 0, l1, . . . , lN) 5 ) v 0, l1, . . . , lN & ^ v 0, l1, . . . , lN )
) v ,l1, . . . , lN) 5 ) v , l1, . . . , lN & ^ v ,l1, . . . , lN ) , etc. (2.22)

which satisfies Eq. (2.5) with respect to the final pointer cobasis for the

states. Now we can define the exact final pointer observables [14 ]

Pi 5 o
n, l1,...,lN

[P (i, v 0)
l1, . . . , lN ) v 0, l1, . . . , lN & ^ v 0, l1, . . . , lN )

1 #
`

0

P(i, v )
l1,..., lN ) v , l1, . . . , lN & ^ v , l1, . . . , lN ) d v ] (2.23)

As H and the Pi are diagonal in the basis { ) v 0, l1, . . . , lN & , ) v , l1, . . . , lN & },

the CSCO {H, P1, . . . , PN} is precisely the complete set of commuting

observables (CSCO) related to this basis, where r * is diagonal in the corres-
ponding cobasis for the states. For simplicity we define the operators Pi such

that the P(i, v 0)
l1,...,l1,...,lN 5 li and the P (i, v )

l1,..., l1,...,lN 5 li; thus8

Pi ) v 0, l1, . . . , lN & 5 li ) v 0, l1, . . . , lN &

P i ) v , l1, . . . , lN & 5 li ) v , l1, . . . , lN & (2.24)

8 For simplicity, we consider that the indices li , like the m i , are discrete, so we are supposing
that the P i have a discrete spectrum, e.g., they are angular momenta.
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So { ) v 0, l1, . . . , lN & , ) v , l1, . . . , lN & } is the observers pointer basis where

there is perfect decoherence in the corresponding states cobasis. Moreover,

the states ( v 0,l1, . . . , lN ) 5 ) v 0, l1, . . . , lN & ^ v 0, l1, . . . , lN ) or ( v , l1, . . . , lN )
5 ) v , l1, . . . , lN & ^ v , l1, . . . , lN ) are constants of the motion and therefore

these exact pointer observables have a constant statistical entropy and will

be ª at the top of the listº of Zurek’ s ª predictability sieveº [14 ]. The final

pointer basis is therefore defined by the dynamics of the model and by the

considered quantum state.

Therefore:
(i) Decoherence in the energy is produced by the time evolution.

(ii) Decoherence in the other dynamical variables can be seen if we

choose an adequate basis, namely the final pointer basis.

Essentially we have given a partial answer, for this kind of model, to

the fundamental question of Gell-Mann and Hartle [15 ] (precisely, only an

answer in the case t ® ` ): For each H and in each initial state r there is
only one final pointer basis and therefore only one ª quasiclassical domain

or realmº [16].9

Our main result is Eq. (2.21): When t ® ` , then r (t) ® r * and in this

state the dynamical variables H, P1, . . . , PN are well defined. Therefore the

eventual conjugate variables to these momentum variables (namely, configu-
ration variables if they exist) are completely undefined. Then r * is homoge-

neous in these configuration variables, in the sense that it is r *(H, P1, . . . ,

PN), because H, P1, . . . , PN) are a CSCO, and r * ª commutesº 10 with all the

H, P1, . . . , PN , and therefore it is not a function of the eventual configura-

tion variables.

2.3. Decoherence Characteristic Decaying Time, the Permanent
Quantum States Case, and the Role of the Environment

From the preceding section we may have the feeling that the process

of decoherence must be found in all physical systems, and therefore all of

them eventually would become classical when " ® 0. This is not so and
there are two reasons:

(i) Characteristic decay times can be computed using analytic continua-

tion techniques, as in ref. 1. For example, in particular models we can find

the characteristic times for the system (e.g., an oscillator) and the field

(e.g., the environment or bath) as below Eq. (56) of ref. 1. If the maximal

characteristic time g 2 1 is very large, even if theoretically the decoherence
process always takes place, it will be so slow that the system will behave as

9 But this unique consistent set depends of course, on the chosen space of observable 2 (see
more in Appendix C).

10 Namely, they commute in the functional sense that ( [H, r * ]) A) 5 ( r * ) [A, H ]) 5 0 for all A P 2.
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a quantum one for a long time. Then there will not be a measurable decoher-

ence. It may also happen that more than one of the g would be zero. Then

we will have more than one possible ground state (bound states), as considered
in next.

(ii) Another way to understand the existence of permanent quantum

systems is to consider the case when the complete Hamiltonian H has more

than one bound state, let us say n (or when the spectrum is discrete). Then

the first term of the r.h.s. of Eq. (2.11) becomes

o
ij

Oij r ji e 2 i( v i 2 v j)t 5 o
i

Oii r ii 1 o
i Þ j

O ij r ji e 2 i( v i 2 v j)t (2.25)

where i, j 5 1, . . . , n, and as the second term of the r.h.s. does not vanish,
decoherence does not take place. This is the case of a theoretical atom, not

coupled to the electromagnetic field, where the electrons remain forever in

their excited states and never decay. Then the atom never goes to a decohered

state. But if the atom is coupled to an electromagnetic field (usually called

the ª environmentº ), there will be only one ground state, n 5 1, the second

term of the r.h.s. of Eq. (2.25) will be absent, and decoherence will occur.
In fact, in many examples the role of the ª environmentº is just to

introduce a continuous spectrum to be coupled in such a way that only one

bound state remains and decoherence is complete. In other cases fluctuations

(or imperfections) of continuous nature take the role of the continuous spec-

trum and produce an average and make the diagonal term disappear. This is

the case of the spin recombination experiment ref. 2, p. 180) in a single
crystal interferometer.

(iii) More generally, the components r nm of a state can be found using

the observables [2 ]

Anm 5 1±2 ( ) n & ^ m ) 1 ) m & ^ n ) ), Bnm 5 i±2 ( ) n & ^ m ) 2 ) m & ^ n ) ) (2.26)

Using only observables from a subset V P 2, we can only found some r nm,
e.g., those constructed with the eigenvalues ) n & and ) m & of H that eventually

expand the space V . Then if we consider only the observables of V , the

components r nm related with these observables can become classical because

their decoherence time is small, while the other components remain quantum

because they have a larger decoherence time. Then we will have a system
which is partially classical and partially quantum (which in fact is the case

of the universe where there are both classical and quantum phenomena).

3. THE CLASSICAL r (cl)

*
(q, p)

3.1. Expansion in Sets of Classical Motions

In this section we will use the Wigner integral, which introduces an

isomorphism between quantum observables and states O and r and their
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classical analogues OW and r W 5 r (cl) (which, in general, it is not positive

definite). In fact, we have that

( r W ) OW) 5 # # r W(q, p)OW(q, p) dp dq 5 Tr( r O) (3.1)

Therefore we can consider generalized classical densities r W as functionals

over classical observables OW and also generalize the previous equation to

( r ) O) 5 ( r (cl) ) OW) (3.2)

In this way some singular classical densities, like the Dirac deltas that we

will use below, get a rigorous meaning.

We will prove that the distribution function r (cl)

*
(q, p) that corresponds

to the density matrix r * via the Wigner integral [17 ] is simply a positive-

definite function of the classical constant of the motion, in our case HW(q, p),

PW1 (q, p), . . . , PWN(q, p), obtained in the same way from the corresponding

quantum operator; precisely,

r (cl)

*
(q, p) 5 r

*
(HW (q, p), PW1(q, p), . . . , PWN(q, p)) $ 0 (3.3)

To simplify the demonstration let us only consider the constant HW (q, p)

and only the continuous spectrum. From Eq. (2.13) we have

r
*

5 # r
*
( v )( v ) d v (3.4)

So we must compute

r (cl)
v (q, p) 5 r W, v (q, p) 5 p 2 1 # ( v ) ) q 1 l & ^ q 2 l ) ) e2ip l d l (3.5)

We know from ref. 1, Section 2.3, that the characteristic property of ( v ) is11

( v ) Hn) 5 v n (3.6)

for n 5 0, 1, 2, . . .. Using well-known relations between quantum and

classical inner products of operators [17], in the limit " ® 0 (we will consider

that we always take this limit when we refer to classical equations below)

we can deduce that the characteristic property of r (cl)
v (q, p) is

# r (cl)
v (q, p) [HW (q, p) ]n dq dp 5 v n (3.7)

for any natural number n. Thus r (cl)
v (q, p) must be

11 This characteristic property of the functional ( v ] is also a property of any usual bra, like the
eigenvectors related to discrete eigenvalues.
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r (cl)
v (q, p) 5 d (HW (q, p) 2 v ) (3.8)

in the sense of functional rigorously defined at the beginning of this section.
Therefore, going back to Eq. (3.4) and since the Wigner relation is linear,

we have

r (cl)

*
(q, p) 5 # r

*
( v ) r (cl)

v (q, p) d v 5 # r
*
( v ) d (HW (q, p) 2 v ) d v

5 r
*
(HW (q, p)) $ 0 (3.9)

QED

Generalizing this reasoning, we can prove Eq. (3.3). Moreover, the

generalized equation (3.9) reads

r (cl)

*
(q, p) 5 o

n, l1,...,lN

r
*
(n, l1, . . . , lN) r (cl)

n, l1,..., lN(q, p) $ 0 (3.1 0)

where we give the collective name n to both v 0 and v , so the symbol ( is
the usual combination of an integral in v and an infinite sum of Eq. (2.21);

r
*
(n, l1, . . . , lN) 5 r (n)

l1,..., lN $ 0 and r (cl)
n, l1,..., lN(q, p) reads

r (cl)
n, l1,...,lN(q, p) 5 d (HW (q, p) 2 n) d (PW1(q, p) 2 l1)

. . . d (PWN(q, p) 2 lN) (3.11)

and it can be interpreted as the state that has n, l1, . . . , lN well defined

and the corresponding classical canonically conjugated variables completely

undefined since r (cl)
n, l1,...,lN(q, p) is not a function of these variables. So we

reach, in the classical case, the same conclusion as in the quantum case (see
end of Section 2.2). But now the all classical canonically conjugate variables
2 a0, a1, . . . , aN do exist since they can be found by solving the corresponding

Poisson bracket differential equations.

As the momenta HW , PW1, . . . , PWN, or any function of these momenta,

which we will generically call P, is also constant of the motion, then we

have Px 5 2 - H/ - a 5 0, where a is the classically conjugate variable to P.

So H is just a function of the P and

ax 5
- H(P)

- P
5 Ã (P) 5 const (3.12)

so

a 5 Ã (P)t 1 a( 0) (3.13)

Then if we call 2 a 0, a1, . . . , aN the classical canonically dynamical variables

of the momenta HW , PW1, . . . , PWN, the last equation reads
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a 0 5 t, a1 5 Ã 1t 1 a( 0)
1 5 const, . . . , aN 5 Ã Nt 1 a( 0)

N 5 const

(3.14)

Thus in the set of classical motions contained in the density (3.11) the

momenta H, P1, . . . , PN are completely defined and the origin of the corres-

ponding motions that we have respectively called a( 0)
1 , . . . , a( 0)

N are completely

undefined, in such a way that the motions represented in the last equation

homogeneously fill the surface H, P1, . . . , PN 5 const, which now turn out
to be a usual torus of phase space.12 This is the interpretation that we give

to the density (3.11), which turns out to be just a function of the H, P1, . . . ,

PN , and not of the classical conjugate variables 2 t, a1, . . . , aN.

Then, Eq. (3.1 0) can be considered as the expansion of r (cl)

*
(q, p) in the

sets of classical motions just described, contained in r (cl)
n, l1,..., lN(q, p), each one

with a probability r
*
(n, l1, . . . , lN).

Summing up:

(i) We have shown that the density matrix r (t) evolves to a diagonal

density matrix r
*
.

(ii) This density matrix r
*

has r (cl)

*
(q, p) as its corresponding classical

density.

(iii) This classical density can be decomposed into sets of classical
motions where H, P1, . . . , PN remain constant. These motion have origins

a( 0)
1 , . . . , a( 0)

N distributed homogeneously.

(iv) From Eqs. (3.1 0) and (3.11), Eq. (3.3) is demonstrated and since

r (n, l1, . . . , lN) $ 0, we also have r (cl)

*
$ 0.

3.2. Expansion in Single Classical Motions

We can now solve the set of classical motions contained in the density
(3.11) in terms of single classical motions. In fact, since

# p
i 5 1

d (ai 2 a(t)
i ) p

i 5 1

da(t)
i 5 1 (3.15)

where

a(t)
i 5 Ã i t 1 a( 0)

i (3.16)

we can write Eq. (3.1 0) as

12 If we consider, for a moment, that H, P1, . . . , PN are isolating constants of the motion.
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r (cl)

*
(q, p) 5 # o

n, l1,...,lN

r
*
(n, l1, . . . , lN) r (cl)

n, l1,..., lN(q, p)

3 p
i 5 1

d (ai 2 a(t)
i ) p

i 5 1

da(t)
i (3.17)

Then if we define

r (cl)
n, l1,..., lN,a( 0)

1 ,...,a( 0)
N (q, p)

5 d (HW (q, p) 2 n) d (PW1(q, p) 2 l1)

3 . . . d (PWN(q, p) 2 lN) d (a1 2 a(t)
1 ) . . . d (aN 2 a(t)

N ) (3.18)

which corresponds to the classical distribution of a motion with momenta n,
l1, . . . , lN and initial conditions a( 0)

1 , . . . , a( 0)
N , and therefore to a single

classical motion. So we can write Eq. (3.17) as

r (cl)

*
(q, p) 5 # o

n, l1,...,lN

r
*
(n, l1, . . . , lN) r (cl)

n, l1,...,lN;a(t)
1 ,...,a(t)

N (q, p) p
i 5 1

da(t)
i (3.19)

namely Eq. (1.9), as we promised in the introduction.

If for completeness we now restore the primitive notation, i.e., v 0 and
the v instead of n, and take the integral over the v , the last equation reads

r (cl)

*
(q, p) 5 o

l1,...,ln

[ # r
*
( v 0, l1, . . . , lN) d (H 2 v 0) ]

3 p
N

i 5 1

d (Pi 2 li) p
j 5 1

d (aj 2 a(t)
j ) p

i 5 1

da(t)
i

1 # r
*
( v , l1, . . . , lN) d (H 2 v ) ]

3 p
N

i 5 1

d (Pi 2 li) p
j 5 1

d (aj 2 a(t)
j ) p

i 5 1

da(t)
i d v ] (3.2 0)

So if we write as before

r (cl)
v 0,l1,..., lN,a

(t)
1 ,...,a

( t)
N

(q, p)

5 d ( p 0 2 v 0) ] p
N

i 5 1

d ( pi 2 li) p
j 5 1

d (aj 2 a(t)
j ) r (cl)

v , l1,...,lN,a( 0)
1 .,...,a( 0)

N (q, p)

5 d ( p 0 2 v ) ] p
N

i 5 1

d ( pi 2 li) p
j 5 1

d (aj 2 a(t)
j ) (3.21)

we have
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r (cl)

*
(q, p) 5 o

l1,...,ln F # r
*
( v 0, l1, . . . , lN) r (cl)

v 0, l1,..., lN,a( 0)
1 .,..,a( 0)

N (q, p) p
i 5 1

da(t)
i

1 # r
*
( v , l1, . . . , lN) r (cl)

v , l1,...,lN,a( 0)
1 ,...,a( 0)

N (q, p) p
i 5 1

da(t)
i d v G (3.22)

r (cl)
v 0, l1,...,lN,a(t)

1 ,...,a(t)
N (q, p) and r (cl)

v , l1,..., lN,a(t)
1 ,...,a( t)

N (x, p) are densities that vanish out-

side of an infinitely narrow tube around the classical trajectory (3.14).
We have obtained the final classical limit. When t ® ` the quantum

density r becomes a diagonal density matrix r
*
. The corresponding classical

distribution r (cl)

*
(x, p) can be expanded as a sum of classical trajectory density

functions r (cl)
v 0, l1,...,lN,a( t)

1 ,...,a(t)
N (x, p) and r (cl)

v , l1,...,lN,a(t)
1 ,...,a(t)

N (x, p), each one weighted

by its corresponding probability r
*
( v 0, l1, . . . , lN) and r

*
( v , l1, . . . , lN). As

the limit of our quantum model we have obtained a statistical classical
mechanical model [2 ] and the classical realm has emerged.

4. CONCLUSION

Using the interplay of observables and states considered as functionals

over the space of observables, we have found an exact final pointer basis
and an intrinsically consistent set of final histories. So, given a Hamiltonian

H and a state r we have found the exact final pointer basis { ) n, l1, . . . , lN & }

and we have shown that r (cl)

*
, the Wigner function of r

*
, can be expanded

in Wigner functions corresponding to the cobasis (n, l1, . . . , lN ) . To obtain

this or similar results almost all authors use coarse-graining methods based

on projectors [like the one in Eq. (2.15) ] and try to obtain a limit [like the
one of Eq. (2.16) ]. So they essentially use the weak limit of Eq. (2.12), namely

lim
t ® `

( r (t) ) O) 5 ( r
*
) O), " O P 2

But, at least in the classical case, we know that this weak limit exists iff the

system is mixing. And the system is mixing iff it has a continuous spectrum
[1, 4, 18] and the present paper can be considered as an extension of the

theorem that says that the mixing evolutions have a weak limit toward

equilibrium [13 ] in the quantum case. Thus the only way to deal with the

problem (at least in the limit t ® ` ) in an exact way is to use a method that,

like ours, is specially adapted to deal with the singularities inherent in that

continuous spectrum. If not, one is condemned to approximate calculations.
Nevertheless, approximate methods are important and, in some cases,

unavoidable in order to obtain the non-final pointer basis, but they can be

better understood if they are compared with exact methods. We are continuing

our research along this line.
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